Generative AI has been growing at a significant rate, with notable technology companies such as Microsoft investing US$10 billion into OpenAI this year. The excitement around generative AI in manufacturing comes from building out potential use cases, scaling from creating new designs to ultimately overhauling entire production processes. According to global technology intelligence firm ABI Research, manufacturers can tie investments in generative AI to additional revenues with a significant spike of US$4.4 billion from 2026 to 2029. By 2033, revenue added from the use of generative AI in manufacturing will reach US$10.5 billion.
“Generative AI has growth that will derive from functionality and use cases across market verticals. The deployment of generative AI will come in three waves as the technology matures, with manufacturing seeing the largest revenue growth during the second and third waves. During the second and third waves of adoption, generative AI will be deployed into four domains of manufacturing: design, engineering, production, and operations,” explains James Iversen, Manufacturing and Industrial Industry Analyst at ABI Research.
Design will see the fastest mainstream deployment with use cases such as generative design and MBOM (manufacturing bill of materials) and EBOM (electrical bill of materials) reductions already having existing solution offerings from companies such as Siemens and Microsoft. Engineering, production, and operations use cases will take longer and require further maturity from generative AI providers due to the complexity of the tasks and required model training.
Use cases for generative AI in manufacturing can be compared by looking at expected TTV (time to value) and ROI (return on investment). For the four domains, the top performers are:
Both manufacturers and manufacturing software providers should prioritize top-performing use cases as they yield the highest returns and can be easily built out with existing generative AI capabilities. “Starting from the ground up, implementing these use cases will lay the groundwork for more extensive use cases. It is important not to jump the gun and develop high-functioning use cases that will see little implementation as trust in generative AI will need to be built up before overhauling significant portions of current manufacturing operations,” Iversen advises.
Manufacturers and manufacturing software providers that are initiating use cases are BMW, Boeing, ByteLAKE, General Motors, Markforged, Nike, NVIDIA, and SprutCAM X with the help of generative AI companies such Nike’s Celect, Gradio, OpenAI, Retrocausal, Work Metrics, and Zapata AI.
These findings are from ABI Research’s Generative AI Use Cases in Manufacturing report. This report is part of the company’s Industrial and Manufacturing Technologies research service, which includes research, data, and ABI Insights. Based on extensive primary interviews, Application Analysis reports present an in-depth analysis of key market trends and factors for a specific application, which could focus on an individual market or geography.
About ABI Research
ABI Research is a global technology intelligence firm delivering actionable research and strategic guidance to technology leaders, innovators, and decision makers around the world. Our research focuses on the transformative technologies that are dramatically reshaping industries, economies, and workforces today.
ABI Research提供开创性的研究和战略指导,帮助客户了解日新月异的技术。 自1990年以来,我们已与全球数百个领先的技术品牌,尖端公司,具有远见的政府机构以及创新的贸易团体建立了合作关系。 我们帮助客户创造真实的业务成果。
For more information about ABI Research’s services, contact us at +1.516.624.2500 in the Americas, +44.203.326.0140 in Europe, +65.6592.0290 in Asia-Pacific, or visit www.abiresearch.com.
Americas: +1.516.624.2542
Europe: +44.(0).203.326.0142
Asia: +65 6950.5670