Quantum computing uses the power of atoms to perform memory and processing tasks and remains a theoretical concept. However, it is widely believed that its creation is possible. Most experts now agree that the creation of a quantum computer is simply a matter of engineering, and that the theoretical application will happen. Optimistic estimates for commercialization by the private sector vary between 5 and 15 years, while more conservative estimates by academics put it at 15-25 years.
The drive to create the first quantum computer has been viewed as the new arms race. The milestone to reach is that of quantum supremacy, essentially the performance of computation that goes beyond the capability of the latest and best supercomputers in existence today. But this drive is underpinning another, more pressing race: quantum cybersecurity.
ABI Research, the leader in emerging technology intelligence, forecasts that the first attack-capable quantum machines will make their market debut by 2030. Michela Menting, Research Director at ABI Research warns, “When they do, even the latest and best in class cybersecurity technologies will be vulnerable.”
The race to quantum supremacy is real: governmental R&D is accelerating the crystallization of the quantum computer, with more than US$1.6 billion already invested globally. The potentially drastic repercussions on cybersecurity is equally real and has led to the focus on quantum-safe cryptography. Also known as post quantum cryptography, such research looks to the development of new cryptographic algorithms that could withstand breaking by quantum computers, ideally before such computers become commercially available. Standards agencies the world over, including the NIST and ETSI, are focusing their efforts on developing appropriate standards as time grows increasingly shorter.
Beyond and ahead of quantum computers, the use of the theory has also aided in developing new cryptographic techniques, notably quantum key distribution (QKD). Considered as a type of quantum-safe cryptography, QKD will likely be commercialized before the advent of quantum computers, because it is achievable using current technologies such as lasers and fiber optics. In that sense, QKD is one of the first quantum theories to find real-world applications.
Heavy private sector investment is going into quantum R&D. Since 2012, VC funds have pumped over US$334 million into companies specializing in the space. Those standing out in the space include CipherQ, CryptaLabs, CryptoExperts, ID Quantique, ISARA, MagiQ Technologies, Post-Quantum Solutions, Qubitekk, QuintessenceLabs, QuNu Labs, and SecureRF.
“The transition to quantum resistant cryptography is bound to take time but enterprises should already start considering how to address this future security gap in in their risk assessments and pay attention to both standard developments and market solutions,” Menting concludes.
These findings are from ABI Research’s Cryptography in the Quantum Computing Era report. This report is part of the company’s Digital Security research service, which includes research, data, and analyst insights.
About ABI Research
ABI Research is a global technology intelligence firm uniquely positioned at the intersection of technology solution providers and end-market companies. We serve as the bridge that seamlessly connects these two segments by providing exclusive research and expert guidance to drive successful technology implementations and deliver strategies proven to attract and retain customers.
ABI Research 是一家全球性的技术情报公司,拥有得天独厚的优势,充当终端市场公司和技术解决方案提供商之间的桥梁,通过提供独家研究和专业性指导,推动成功的技术实施和提供经证明可吸引和留住客户的战略,无缝连接这两大主体。
For more information about ABI Research’s services, contact us at +1.516.624.2500 in the Americas, +44.203.326.0140 in Europe, +65.6592.0290 in Asia-Pacific, or visit www.abiresearch.com.
Americas: +1.516.624.2542
Europe: +44.(0).203.326.0142
Asia: +65 6950.5670