INDEX

Renewable Energy Storage: Batteries, Flywheels, Molten Salt, Pumped Hydro, and Other Technologies That Help Manage Intermittency in the Power Grid

Nations are increasingly investing in renewable energy, but adding solar and wind power to the electrical power grid can be tricky because solar can't provide energy at night and wind turbines can't generate electricity when the wind stops blowing. The grid can't deal with power sources that it can't predict, so the solution being investigated and adopted by utilities worldwide is the addition of storage to the equation. Storage can absorb extra power generated by solar, wind and even hydroelectric power generation and feed it to the grid during periods of peak demand whether or not the sun shines or the wind blows.

This study examines the types of energy storage currently in use and being investigated, and looks ahead at the extent to which utilities around the world will be able to take increasing advantage of them over the forecast period.

Table of Contents

  • Executive Brief: Top-Line Forecast
  • 1. Executive Summary
    • 1.1. The "Holy Grail"
    • 1.2. Current State of Utility-Scale Energy Storage
      • 1.2.1. Power-Oriented Storage
      • 1.2.2. Energy-Oriented Storage
    • 1.3. Global Forecast Highlights
    • 1.4. Regional Forecast Highlights
      • 1.4.1. North America
      • 1.4.2. Europe
      • 1.4.3. Asia-Pacific
      • 1.4.4. Rest of World
  • 2. Technology Overview
    • 2.1. Current Renewable Energy Resources
      • 2.1.1. Solar Photovoltaic Power
        • 2.1.1.1. How It Works
        • 2.1.1.2. How Storage Can Help
      • 2.1.2. Wind Power
        • 2.1.2.1. How It Works
        • 2.1.2.2. How Storage Can Help
      • 2.1.3. Hydroelectric Power
        • 2.1.3.1. How It Works
        • 2.1.3.2. How Storage Can Help
      • 2.1.4. Geothermal Power
        • 2.1.4.1. How It Works
        • 2.1.4.2. How Storage Can Help
    • 2.2. Smart Grid
      • 2.2.1. How It Works
      • 2.2.2. Implementation Costs
      • 2.2.3. Challenges
      • 2.2.4. Smart Grid Status
    • 2.3. Energy Storage
      • 2.3.1. How It Will Work with the Smart Grid
        • 2.3.1.1. Community Energy Storage (CES)
        • 2.3.1.2. Bulk Storage
    • 2.4. Varieties of Utility-Scale Energy Storage
      • 2.4.1. Pumped Hydroelectric Energy Storage
        • 2.4.1.1. Challenges
      • 2.4.2. Compressed Air Energy Storage
        • 2.4.2.1. Challenges
      • 2.4.3. Thermal Energy Storage
        • 2.4.3.1. Ice
        • 2.4.3.2. Molten Salt
        • 2.4.3.3. Challenges
      • 2.4.4. Batteries
        • 2.4.4.1. Lithium-Ion Batteries
        • 2.4.4.2. Lead-Acid and Lead-Carbon Batteries
        • 2.4.4.3. Sodium-Sulfur Batteries
        • 2.4.4.4. Flow Battery
      • 2.4.5. Supercapacitors
      • 2.4.6. Flywheels
  • 3. Business and Regulatory Issues
    • 3.1. Market Challenges
      • 3.1.1. Implementation Costs
      • 3.1.2. Technology Adoption
      • 3.1.3. Business Climate
      • 3.1.4. Regulations
    • 3.2. Market Drivers
      • 3.2.1. Government Incentives
        • 3.2.1.1. North America
          • 3.2.1.1.1. Canada
          • 3.2.1.1.2. United States
        • 3.2.1.2. Asia-Pacific
          • 3.2.1.2.1. Australia
          • 3.2.1.2.2. China
          • 3.2.1.2.3. New Zealand
          • 3.2.1.2.4. Philippines
          • 3.2.1.2.5. India
        • 3.2.1.3. Europe
      • 3.2.2. United Nations Initiatives
  • 4. Market Outlook
    • 4.1. Forecast Methodology
      • 4.1.1. Primary and Secondary Sources of Information
    • 4.2. Forecasts by Region
      • 4.2.1. North America
      • 4.2.2. Europe
      • 4.2.3. Asia-Pacific
      • 4.2.4. Rest of World
    • 4.3. Forecasts by Technology
      • 4.3.1. Pumped Hydroelectric Energy Storage
      • 4.3.2. Compressed Air Energy Storage (CAES)
      • 4.3.3. Thermal Energy Storage
        • 4.3.3.1. Molten Salt
        • 4.3.3.2. Ice
      • 4.3.4. Batteries
        • 4.3.4.1. Lithium-Ion Batteries
        • 4.3.4.2. Other Battery Technologies
      • 4.3.5. Supercapacitors
      • 4.3.6. Flywheel Energy Storage
  • 5. Company Profiles
    • 5.1. A123 Systems Inc
    • 5.2. American Electric Power Company, Inc
    • 5.3. Altair Nanotechnologies
    • 5.4. Axion Power
    • 5.5. Beacon Power
    • 5.6. CALMAC Manufacturing Corp
    • 5.7. General Electric
    • 5.8. NGK Insulators
    • 5.9. Saft Group
    • 5.10. SolarReserve
    • 5.11. SolRayo
    • 5.12. SustainX
    • 5.13. ZBB Energy
  • 6. Industry Directory
  • 7. Acronyms

Charts

  1. Cumulative Utility-Scale Energy Storage Capacity World Market, Forecast: 2009 to 2015
  2. Pumped Hydroelectric Energy Storage Cumulative Capacity World Market, Forecast: 2010 to 2015
Purchase Preview

Research Information

  • Price Log in to view pricing
  • Publish Date 2Q 2010
  • Research Type Research Report Report
  • Code RR-RES-10
  • Pages 89
  • Tables 17
  • Charts 10
  • Figures 7
  • File Formats Excel PDF Powerpoint